合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 肺內(nèi)液表面張力的作用、臨床意義及測(cè)量方法(一)
> 微流控器件結(jié)構(gòu)對(duì)水/水微囊形成過(guò)程、界面張力的影響規(guī)律(一)
> 定性分析聚合物界面張力與系統(tǒng)黏度比之間的關(guān)系——實(shí)驗(yàn)部分
> 全自動(dòng)表面張力儀測(cè)定原理及操作步驟【實(shí)驗(yàn)】
> 溶液針鐵礦法沉鐵方法,如何確定表面張力等參數(shù)值
> 石油磺酸鹽中有效組分的結(jié)構(gòu)與界面張力的關(guān)系
> 烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質(zhì)研究(一)
> 接觸角遲滯時(shí)氣~液界面張力的溫度敏感性對(duì)液滴蒸發(fā)過(guò)程的影響——結(jié)果分析、結(jié)論
> 超微量天平應(yīng)用實(shí)例:利用火試金法測(cè)定鉛精礦中銀含量
> 尿液中出現(xiàn)大量泡沫是不是得腎?。?/a>
推薦新聞Info
-
> 基于表面張力測(cè)試儀研究表面活性劑促進(jìn)浮選精煤脫水的機(jī)理(三)
> 基于表面張力測(cè)試儀研究表面活性劑促進(jìn)浮選精煤脫水的機(jī)理(二)
> 基于表面張力測(cè)試儀研究表面活性劑促進(jìn)浮選精煤脫水的機(jī)理(一)
> β-乳球蛋白質(zhì)納米纖維制備及界面吸附和界面流變行為分析——結(jié)果與分析、結(jié)論
> β-乳球蛋白質(zhì)納米纖維制備及界面吸附和界面流變行為分析——摘要、材料與方法
> 溫度對(duì)甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(四)
> 溫度對(duì)甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(三)
> 溫度對(duì)甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(二)
> 溫度對(duì)甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(一)
> 低張力氮?dú)馀菽w系的研制試驗(yàn)油井組方案設(shè)計(jì)及結(jié)果分析
棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(二)
來(lái)源:應(yīng)用化工 瀏覽 579 次 發(fā)布時(shí)間:2024-12-02
2結(jié)果與討論
2.1淀粉的理化性質(zhì)
2.1.1淀粉糊液的透明度
透光率反映了淀粉顆粒在水中的分散程度和分子間重排的互相締合作用,分散程度越大越均勻,淀粉顆粒的親水性越強(qiáng),淀粉分子間氫鍵的締合作用越小,光線透過(guò)率就越大,透明度就越高。由圖1可知,木薯原淀粉的透光率高于棕櫚酸酯淀粉,棕櫚酸酯淀粉的透光率隨DS增大而逐漸下降。這可能是木薯淀粉在棕櫚酸的作用下引入了疏水性棕櫚酸碳鏈官能團(tuán),致使淀粉分子之間的排斥力增強(qiáng),疏水性增強(qiáng),親水性減弱,淀粉分子與水結(jié)合在一定程度上受阻,從而使淀粉糊液對(duì)光的反射及散射的強(qiáng)度增強(qiáng),透光率降低,透明度降低。
圖1木薯原淀粉與棕櫚酸酯淀粉的透光率
2.1.2淀粉的流變性
粘度是反映液體流變性能最常用的指標(biāo),粘度越小其流變性越高。由圖2可知,在同一轉(zhuǎn)速下,隨著取代度的增加,棕櫚酸酯淀粉糊液粘度升高;隨轉(zhuǎn)速增大,粘度先急劇下降后逐漸趨向平緩。棕櫚酸酯淀粉糊液粘度隨剪切速率的增大而減小,呈現(xiàn)“剪切稀化”特性,屬假塑性流體。淀粉糊液“剪切稀化”的程度與分子鏈的長(zhǎng)短有關(guān),高DS淀粉酯相對(duì)分子質(zhì)量較高,“剪切稀化”程度也較大。淀粉糊液表觀粘度隨著剪切速率的增大而降低,表明淀粉凝膠網(wǎng)絡(luò)體系中分子間或分子內(nèi)的作用力(氫鍵)在較高的剪切速率下更容易被破壞。當(dāng)剪切速率繼續(xù)增加到淀粉分子纏結(jié)點(diǎn)、范德華力作用點(diǎn)被破壞完全來(lái)不及重建時(shí),淀粉糊液表觀粘度趨于最小值。
圖2不同剪切速度下淀粉的粘度曲線
2.1.3淀粉的表面活性棕櫚酸酯淀粉糊液的表面張力測(cè)定結(jié)果見圖3。
圖3不同濃度的棕櫚酸酯淀粉的表面張力曲線
由圖3可知,淀粉糊液表面張力隨DS增大而逐漸降低,DS=0.012和DS=0.015的棕櫚酸酯淀粉降低水的表面張力的能力與LAS基本相當(dāng)。棕櫚酸酯淀粉分子結(jié)構(gòu)由親水基和疏水基組成,是一種典型的親水主干-疏水支鏈型高分子表面活性劑,隨著DS增大,疏水基含量增多,淀粉降低水的表面張力的能力增大,對(duì)水的表面活性增大。DS=0.015的淀粉糊液降低水的表面張力的能力與DS=0.012非常接近,這是因?yàn)楦逥S產(chǎn)物其分子量大,大分子鏈易于卷曲,疏水鏈段易于被親水鏈段覆蓋,對(duì)降低表面張力不利。由此可見,淀粉親水基的親水性和疏水基的疏水性要基本匹配才能具有顯著的表面活性,任一方過(guò)強(qiáng)或過(guò)弱均會(huì)削弱兩親分子的表面活性。
不同DS不同質(zhì)量濃度的棕櫚酸酯淀粉具有不同的表面張力,DS越高、質(zhì)量濃度越大,其表面張力越低,DS越高的淀粉其表面張力趨于穩(wěn)定的濃度越低,即臨界膠束濃度(cmc)越低。臨界膠束濃度(cmc)是表面活性劑的重要特征參數(shù),cmc越低的表面活性劑的效率越高。實(shí)驗(yàn)范圍內(nèi)的棕櫚酸酯淀粉具有較高的表面活性,可作為表面活性劑應(yīng)用。
2.1.4淀粉的乳化性能
棕櫚酸酯淀粉與常用表面活性劑LAS的乳化性能比較見表1。
表1棕櫚酸酯淀粉與LAS的乳化性能
由表1可知,棕櫚酸酯淀粉的乳化能力和乳化穩(wěn)定性均隨DS增大而增大,DS=0.012和DS=0.015的棕櫚酸淀粉酯乳化性能與LAS相似,這是因?yàn)檩^高DS的棕櫚酸酯淀粉其疏水性基團(tuán)較多,親油性能提高。隨著疏水基數(shù)目的增加,一方面淀粉酯降低表面張力的能力增強(qiáng),另一方面與油相的作用能力增強(qiáng),在乳膠粒表面吸附的親水性高分子保護(hù)膠體在乳膠粒表面形成一定厚度的水化層,乳膠粒發(fā)生碰撞聚結(jié)的空間位阻加大,有利于乳膠粒的穩(wěn)定。由此可知,隨著疏水性棕櫚酸酯鏈的引入,淀粉的疏水性增加,使之具備了親水和親油的雙親性質(zhì),因而具備了乳化性,可在食品、醫(yī)藥、材料、日用化學(xué)品等領(lǐng)域應(yīng)用。