合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 連鑄結(jié)晶器內(nèi)渣鋼兩相表面張力和界面張力的演變行為與機制
> 一滴水緩慢落到非常光滑的平面上,接觸面積會有多大?
> 含聚氧丙烯醚陽離子型雙子表面活性劑化學(xué)結(jié)構(gòu)式、制備方法
> 3D打印鈦合金粉體的生產(chǎn)工藝——高速高壓氬氣氣流克服鈦合金熔體表面張力
> 壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
> 科普:關(guān)于三軸試驗的基礎(chǔ)知識
> 日本在地下存了5萬噸純凈水?
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(一)
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 低氣壓下氣泡全生命期特征及引氣混凝土性能提升
推薦新聞Info
-
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(三)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(二)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(一)
> 座滴法測量玻璃熔體表面張力準確性及影響因素
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 液體表面張力受力分析圖:原理、數(shù)學(xué)模型、應(yīng)用與實例
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(下)
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(上)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(三)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(二)
氧化石蠟油水界面張力測試方法及低張力性能
來源:石油煉制與化工 瀏覽 821 次 發(fā)布時間:2024-09-20
石蠟化學(xué)改性的常用方法有氧化法、氯化法和酯化法。氧化改性可改善石蠟的乳化、分散等性能,拓寬石蠟產(chǎn)品的應(yīng)用領(lǐng)域。以氧氣(或空氣)為氧化劑高溫氧化石蠟時,由于碳氫鍵解離能較高,使得氧化反應(yīng)的激發(fā)溫度較高(>210℃),反應(yīng)誘導(dǎo)期較長。工業(yè)石蠟液相氧化多采用錳(或錳/鈉)催化劑,使用此類催化劑可使石蠟氧化反應(yīng)活化能降低約33 kJ/mol。錳催化劑的定向作用有利于氧化反應(yīng)向生成脂肪酸的方向進行,但生產(chǎn)過程中會產(chǎn)生廢催化劑錳渣和較多低分子烴、醇、醛和酸。
在引發(fā)劑方面,有機過氧化物的過氧鍵鍵能較低,容易分解產(chǎn)生烴氧、烴過氧自由基,從而直接引發(fā)石蠟烴分子發(fā)生新的鏈反應(yīng),也容易與氧化產(chǎn)物進行反應(yīng),因而其氧化過程不同于熱催化鏈引發(fā)過程。過氧化物反應(yīng)活性低于自由基,在分支鏈反應(yīng)過程中會生成部分穩(wěn)定產(chǎn)物(醛、酮、醇),該分支鏈反應(yīng)緩和,為退化分支鏈反應(yīng);有機過氧化物和石蠟烴互溶,跳過初始自由基鏈引發(fā)的慢步驟,使反應(yīng)誘導(dǎo)期大大縮短,氧化反應(yīng)激發(fā)溫度降低,理論上有利于石蠟液相氧化反應(yīng)的進行。
本課題采用自制月桂基過氧化氫引發(fā)劑,通過引發(fā)石蠟烴進行鏈氧化反應(yīng)對石蠟氧化改性,研究適宜的引發(fā)氧化工藝條件,測試氧化石蠟產(chǎn)品的油水界面張力和洗油性能,拓展氧化石蠟在三次采油領(lǐng)域的應(yīng)用。
石蠟氧化方法
稱取一定量58號石蠟,放入四口燒瓶中,加熱至完全熔化,然后通入流量恒定的干燥空氣,升溫至反應(yīng)溫度,加入月桂基過氧化氫,激發(fā)后體系開始氧化放熱,定期取樣并測定氧化石蠟的酸值和皂化值。反應(yīng)結(jié)束后降溫,用飽和碳酸鈉水溶液將氧化石蠟洗至pH為8~10,作驅(qū)油劑使用。
界面張力測定方法
采用PerkinElmer公司生產(chǎn)的SpectroⅠ型紅外光譜儀定性分析氧化石蠟產(chǎn)品分子中含氧基團的紅外吸收特征。
采用芬蘭Kibron公司旋轉(zhuǎn)滴界面張力儀測定不同驅(qū)油體系下的油水界面張力。油水混合物為脫水原油和回注污水的混合物,測定溫度為45℃。作為驅(qū)油劑的石油磺酸鹽和氧化石蠟產(chǎn)品,分別與NaOH組成二元復(fù)合驅(qū)油體系。
采用經(jīng)甲苯抽提除油、干燥的粒徑為30~60目大慶PⅠ油層組油砂,在45℃下浸漬吸附脫水原油24 h,將吸附飽和的油砂水洗、減壓干燥后備用。分別用不同質(zhì)量分數(shù)的驅(qū)油劑攪拌清洗油砂,清洗體系的液固質(zhì)量比為9∶1,清洗溫度為45℃,清洗時間為60 min。清洗前后的油砂分別用甲苯抽提后,用分光光度標準曲線法測定油砂含油率,測定波長為400 nm。根據(jù)清洗前后油砂含油率的變化,按下式計算驅(qū)油劑的洗油率。
氧化石蠟的低張力性能
在氧化石蠟產(chǎn)品質(zhì)量分數(shù)為0.5%的條件下,將其與NaOH組成二元驅(qū)油體系,進行堿用量范圍掃描,考察氧化石蠟驅(qū)油體系在不同堿濃度下和原油形成低界面張力的性能,并與同等條件下的石油磺酸鹽進行比較。在不同濃度NaOH協(xié)同下,氧化石蠟驅(qū)油體系和石油磺酸鹽驅(qū)油體系的油水平衡界面張力對比結(jié)論如下。
在NaOH協(xié)同下氧化石蠟可以有效降低油水界面張力,當NaOH質(zhì)量分數(shù)為1.2%時,體系和原油的平衡界面張力較低,協(xié)同效果較佳;相比于石油磺酸鹽,氧化石蠟降低油水界面張力能力較低,形成超低界面張力所需堿濃度較高。
固定NaOH質(zhì)量分數(shù)為1.2%,考察不同濃度氧化石蠟驅(qū)油體系與原油形成低界面張力的性能。不同濃度氧化石蠟驅(qū)油體系的油水動態(tài)界面張力,可知:當氧化石蠟質(zhì)量分數(shù)為0.6%時,油水界面張力下降較慢;當氧化石蠟質(zhì)量分數(shù)為1.0%時,油水界面張力下降快,達到最低點后快速回升;當氧化石蠟質(zhì)量分數(shù)為0.8%時,油水界面張力下降較快,平衡界面張力低至2.9×10-3mN/m,和NaOH協(xié)同效果較佳。
氧化石蠟組成復(fù)雜,除含有未反應(yīng)的石蠟烴外,還含有水溶性酸和水不溶性酸,以及相當數(shù)量的醇、醛、酮、酯、多官能團化合物等,這些極性基團賦予氧化石蠟的油水界面活性。其烴基有一定的平均相對分子質(zhì)量分布,其組成的多樣性對應(yīng)原油組成的復(fù)雜性,從而提高和原油的配伍性。NaOH和原油中的極性物質(zhì)(石油酸、膠質(zhì)和瀝青質(zhì)等)作用,形成界面活性物質(zhì),和氧化石蠟中的極性物質(zhì)競爭吸附于油水界面,形成復(fù)合吸附層。石蠟氧化降解,導(dǎo)致氧化石蠟界面活性物平均相對分子質(zhì)量偏低,和原油配伍性稍差,油水界面吸附量下降,其降低油水界面張力的能力弱于石油磺酸鹽。
當驅(qū)油體系堿濃度低時,堿劑激活的界面活性分子數(shù)目少。氧化石蠟濃度低,則氧化石蠟分子界面吸附傳質(zhì)速率低,界面張力下降速率較低。當驅(qū)油體系堿濃度高時,體系離子強度高,氧化石蠟分子界面吸附平衡偏離。氧化石蠟濃度高,則水相膠束增溶氧化石蠟高活性分子,界面活性分子脫附,致使界面張力回升。當NaOH質(zhì)量分數(shù)為1.2%、氧化石蠟質(zhì)量分數(shù)為0.8%時,在油水界面產(chǎn)生最大吸附,油水界面性質(zhì)變化程度最大。
氧化石蠟的洗油性能
針對NaOH質(zhì)量分數(shù)為1.2%的氧化石蠟體系和NaOH質(zhì)量分數(shù)為0.9%的石油磺酸鹽體系,比較氧化石蠟和石油磺酸鹽對原油的洗脫性能。兩種驅(qū)油劑的洗油率對比可知:氧化石蠟可以有效洗脫砂巖表面的原油,當氧化石蠟質(zhì)量分數(shù)為0.8%時,洗油率最高達到61.0%;相比于石油磺酸鹽,氧化石蠟洗脫原油能力較低,達到最大洗油率所需用量較高。
氧化石蠟在油水界面吸附,油水界面張力降低,原油和砂巖的黏附功減?。谎趸炘谏皫r表面吸附,原油對砂巖表面潤濕角增加,也可減小黏附功。氧化石蠟可以使油水界面張力達到超低,反轉(zhuǎn)原油在砂巖表面的潤濕性,降低黏附功,原油易于從砂巖表面洗脫,具有很好的洗油效率。另外,氧化石蠟中的羧酸物質(zhì)在砂巖表面吸附時可提高表面電荷密度,增加原油與砂巖表面間的靜電斥力,也提高了洗油效率。氧化石蠟降低油水界面張力的能力以及在砂巖表面吸附能力均弱于石油磺酸鹽,導(dǎo)致其洗油率相對較低。
結(jié)論
(1)以自制月桂基過氧化氫引發(fā)石蠟氧化鏈反應(yīng)對石蠟進行改性,在反應(yīng)溫度為130℃、反應(yīng)時間為6 h、引發(fā)劑用量(w)為0.5%、空氣流量為220 mL/min的條件下,氧化石蠟的酸值為40.5 mgKOH/g,皂化值為65.3 mgKOH/g。
(2)氧化石蠟產(chǎn)品具有較好的油水界面性能和洗油能力,NaOH質(zhì)量分數(shù)為1.2%、氧化石蠟質(zhì)量分數(shù)為0.8%的二元體系與原油的平衡界面張力為2.9×10-3mN/m,砂巖表面原油洗脫率為61.0%。