合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 降低滌棉面料環(huán)保型低溫精練劑表面張力的方法與技術方案
> Delta-8使用新方法測試CMC,而不是表面張力測試法——方法
> 產(chǎn)低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——結果與討論、結論
> 常見多元醇(乙二醇、甘油、季戊四醇、山梨醇等)在化妝品中的作用
> 油乳劑疫苗黏度與穩(wěn)定性影響因素
> St與MMA在無皂乳液聚合過程中的動態(tài)表面張力變化——結果與討論、結論
> SF作為天然表面活性劑制造納米器件,大大改善疏水表面的水潤濕性
> 懸浮床加氫工藝條件下界面張力、油品黏度模擬近似計算(一)
> 不同溫度下手性離子液體及二元混合物的密度和表面張力(下)
> 雙內(nèi)凹結構表面可實現(xiàn)對低表面張力液體的穩(wěn)固超排斥
推薦新聞Info
-
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(三)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(二)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(一)
> 座滴法測量玻璃熔體表面張力準確性及影響因素
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 液體表面張力受力分析圖:原理、數(shù)學模型、應用與實例
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(下)
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(上)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(三)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(二)
表面張力儀應用:研究活性磁化水對無煙煤塵的濕潤作用(二)
來源:北京理工大學學報 瀏覽 90 次 發(fā)布時間:2025-03-06
3結果與討論
3.1煤的濕潤性
圖1為本實驗所選煤樣的接觸角測試結果圖,由圖可以看出,煤樣的接觸角為74.2°,相較于其他類型的煤(接觸角為20.55°,22.34°,34.23°和29.75°),其接觸角明顯偏大,具有較強的疏水性。
圖1煤樣的接觸角測試結果圖
表1為煤樣的工業(yè)分析結果,其水分為1.97%.根據(jù)XU等的研究結論,煤塵的水分越大,濕潤性越好,其實驗所用煤樣的水分分別為1.44,1.84,1.28,3.71,1.42,5.83,5.52,6.17.與之相較,所選煤樣水分小于2%,為低水分煤樣,濕潤性較差。
表1煤樣的工業(yè)分析
3.2不同表面活性劑溶液的濕潤性
如圖2所示,4種溶液隨著濃度的增加,表面張力逐漸趨于穩(wěn)定。十二烷基磺酸鈉溶液質(zhì)量分數(shù)大于0.20%時,溶液表面張力趨于穩(wěn)定。表面張力最小時,溶液質(zhì)量分數(shù)為0.30%.十二烷基硫酸鈉(SDS)溶液質(zhì)量分數(shù)大于0.05%時,溶液表面張力趨于穩(wěn)定。表面張力最小時,溶液質(zhì)量分數(shù)為0.15%.十二烷基苯磺酸鈉(SDBS)質(zhì)量分數(shù)大于0.15%時,溶液表面張力趨于穩(wěn)定。表面張力最小時,溶液質(zhì)量分數(shù)為0.30%.塵克C&C溶液質(zhì)量分數(shù)大于0.05%時,溶液表面張力趨于穩(wěn)定。表面張力最小時,溶液質(zhì)量分數(shù)為0.10%.由圖可以看出,相較于十二烷基苯磺酸鈉(SDBS)和十二烷基磺酸鈉,十二烷基硫酸鈉(SDS)和塵克C&C可以較大程度地降低溶液的表面張力,提高溶液對低水分無煙煤顆粒的濕潤性。同時,考慮到塵克C&C溶液具有無腐蝕、無污染、可生物降解、不造成二次污染的特性,最終選擇質(zhì)量分數(shù)0.10%塵克C&C溶液作為最優(yōu)表面活性溶液。
圖2不同溶劑溶液的表面張力
3.3溶液表面張力隨磁化強度的變化
如圖3所示,磁化5 min后的礦井靜壓水和質(zhì)量分數(shù)0.10%塵克C&C溶液表面張力會降低,最大降低幅度分別為7.28%和7.54%.最佳磁場強度均為300 mT.
圖3不同磁化強度條件下礦井靜壓水與質(zhì)量分數(shù)0.10%塵克C&C溶液的表面張力
無論礦井靜壓水還是質(zhì)量分數(shù)0.10%塵克C&C溶液,隨著磁場強度的增加,其溶液表面張力先減小后增大。這是因為磁場的施加可使溶液發(fā)生三方面的變化,分別是:①磁場可破碎水分子簇,使之成為許多小分子體,從而減弱其表面張力。②磁場可使溶液分子之間的氫鍵斷裂,使得溶液具有更強的極性,更容易與煤表面的懸鍵結合,從而濕潤煤體。③適當?shù)拇艌鰰沟萌芤罕砻娴挠H水基團更加致密,從而增強溶液的濕潤性。磁場強度的增加,使得這三方面的影響逐漸增大,表現(xiàn)為溶液的表面張力逐漸減小。然而,過度的磁化可使溶液表面的親水基團脫落,使得溶液濕潤性變差,表現(xiàn)為過度磁化后溶液表面張力逐漸增加。
由圖3可知,質(zhì)量分數(shù)0.10%塵克C&C溶液的表面張力為33.2 mN/m.加入質(zhì)量分數(shù)0.10%塵克C&C試劑,使得溶液表面張力由59.1 mN/m下降到33.2 mN/m,下降幅度為43.82%.磁化強度為300 mT,磁化5 min的礦井靜壓水的表面張力為54.8 mN/m.最佳磁化強度下,礦井靜壓水的表面張力由59.1 mN/m下降到54.8 mN/m,下降幅度為7.28%.由此可知,與試劑對溶液濕潤性的提升效果相比,磁化作用對溶液濕潤性的提升較小。
3.4溶液表面張力隨磁化時間的變化
確定最優(yōu)磁化時間,對磁化裝置設計及經(jīng)過磁化裝置時的流量參數(shù)控制很重要。如圖4(a)所示,在300 mT的磁化強度下,磁化時間超過60 s時,礦井靜壓水和質(zhì)量分數(shù)0.10%塵克C&C溶液表面張力逐漸趨于穩(wěn)定。磁化強度為300 mT,磁化時間60 s時,礦井靜壓水和質(zhì)量分數(shù)0.10%塵克C&C溶液表面張力最小,分別為52.0,31.5 mN/m.
圖4不同磁化時間下礦井靜壓水與質(zhì)量分數(shù)0.10%塵克C&C溶液的表面張力
為了確定最優(yōu)磁化時間,分別測定了磁場強度為300 mT,磁化時間為30,40,50,60,70,80,90 s時的溶液表面張力。由圖4(b)可以看出,磁化時間在30——90 s范圍內(nèi),礦井靜壓水的表面張力波動性變化,磁化時間為60 s時,礦井靜壓水的表面張力最小。而質(zhì)量分數(shù)0.10%塵克C&C溶液的表面張力在50 s時有一個明顯的拐點,之后表面張力趨于穩(wěn)定。拐點處,質(zhì)量分數(shù)0.10%塵克C&C溶液表面張力最小。磁場強度為300 mT,質(zhì)量分數(shù)0.10%的塵克C&C溶液的最佳磁化時間為50 s.